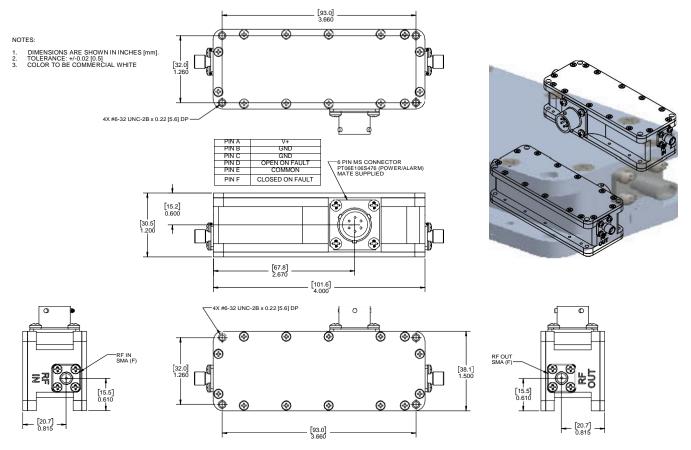
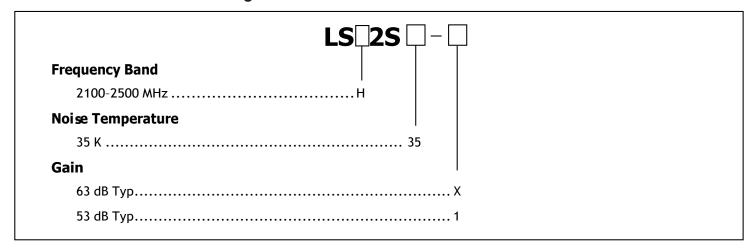
LSH2S series S-Band Low Noise Amplifiers are specifically designed for satellite earth station receiver front ends and other telecommunications applications.


Utilizing state-of-the-art MMIC technology, these amplifiers have been designed for both fixed and transportable applications. High performance models are available with noise temperatures as low as 35 K. Noise temperature specifications are guaranteed over the full bandwidth of the LNA.



#### **FEATURES:**


- State-of-the-art noise performance
- MMIC design
- Internal regulator
- Reverse polarity protection
- High reliability
- Fault alarm

# **Outline Drawing**



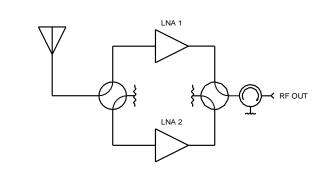
| LSH-2000 Series                                      |                               | Specifications/Part Number Ordering Information                                                              |  |
|------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| Parameter                                            | Notes                         | Specification                                                                                                |  |
| Frequency Range                                      | Band "H"                      | 2100 to 2500 MHz                                                                                             |  |
| Gain                                                 | -X<br>-1                      | 60 dB min., 63 dB typical, 66 dB max.<br>50 dB min., 53 dB typical, 56 dB max.                               |  |
| Gain Flatness                                        |                               | ±0.5 dB max. over the full band<br>±0.25 dB max. per 10 MHz                                                  |  |
| VSWR                                                 | Input<br>Output               | 1.50:1 typical, 1.75:1 max.<br>1.50:1 typical, 1.75:1 max.                                                   |  |
| Noi₅e Temperature (1)                                |                               | See Table 1 for maximum, at +23°C See Table 2 for typical, versus temperature                                |  |
| Power Output at 1dB compression (P <sub>1 dB</sub> ) |                               | +10 dBm min., +13 dBm typical                                                                                |  |
| 3 <sup>rd</sup> Order Intercept                      | Output, OIP <sub>3</sub>      | +20 dBm min., +23 dBm typical                                                                                |  |
| Group Delay per 36 MHz                               | Linear<br>Parabolic<br>Ripple | 0.05 ns/MHz<br>0.005 ns/MHz <sup>2</sup><br>1.0 ns peak to peak                                              |  |
| AM/PM Conversion                                     |                               | 0.05°/dB typical, -5° dBm output power                                                                       |  |
| Gain Stability<br>(Con₅tant Temperature)             |                               | ±0.1. dB max. Short term (10 min)<br>±0.2. dB max. Medium term (24 hrs)<br>±0.5. dB max. Long term (1 week). |  |
| Gain Stability<br>veាន ឬ temperature                 |                               | -0.04 dB per °C                                                                                              |  |
| Maximum Input Power                                  | Damage threshold              | +10 dBm max.                                                                                                 |  |
| Connector                                            | Input, Output<br>Power        | SMA Female<br>MS-6 pin (mate supplied)                                                                       |  |
| Power Requirements                                   | Voltage<br>Current            | 11 V min., 12 V typical, 15 V max.<br>190 mA typical, 220 mA max.                                            |  |
| Operating Temperature                                |                               | -40°C to +60°C                                                                                               |  |

Table 1 - Part Number Ordering Information

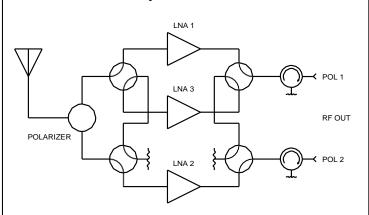


### Table 2 - Noise Temperature vs. Ambient Temperature

Noise temperature vs. ambient temperature can be found from the equation,


For the case where  $T_1$  = 296 K (+23 °C), the ratio  $NT_2/NT_1$  is shown in the table below:

| $NT_2/NT_1 = (T_2/T_1)^{1.5}$ |   |                                     | Ambient<br>Temperature | Ratio                             |
|-------------------------------|---|-------------------------------------|------------------------|-----------------------------------|
| where:                        |   |                                     | T <sub>2</sub> (°C)    | NT <sub>2</sub> / NT <sub>1</sub> |
| NT <sub>2</sub>               | = | Noise Temperature at T <sub>2</sub> | 0                      | 0.88                              |
| $NT_1$                        | = | Noise Temperature at $T_1$          | +23                    | 1.00                              |
| $T_2$                         | = | Temperature 2 in K                  | +40                    | 1.09                              |
| $T_1$                         | = | Temperature 1 in K                  | +50                    | 1.14                              |
|                               |   | $(K = ^{\circ}C + 273)$             | +60                    | 1.19                              |


Example: For model LSH2535-X,  $NT_1$  = 35 K at +23 °C; what is  $NT_2$  at +50 °C? From the table,  $NT_2$  / $NT_1$  at +50 °C = 1.14:  $NT_2$  = 1.14 x (35 K) = 40 K at +50 °C

## Typical Applications

### 1:1 Redundant Systems



### 1:2 Redundant Systems



10880 Wilshire Blvd Los Angeles CA 90024 USA

Phone: +1.888.315.9545

Email: contact@orbitalconnect.com https://store.orbitalconnect.com

